まちづくりマーケティング
 第5回
 2016年11月10日

© Department of Business and Economics，
Iics Nipoonen Bunri University

NBU
Cause \＆Result（再掲）
－因果関係を探る形でのまちづくりマーケティン グが行われていない。

- 東九州自動車道ができれば，お客さんが来る。
- JRおおいたシティが開業すれば，中心市街地は活性化する。

－従来の社会調査では，回答した結果の原因がわから ないことが多い。

Oepartment of Business and Economics．
Economics，
NBU Aさんの消費行動（開業前）

NBU

ハフモデルとは？

- 商業施設に1ヶ月に何回行くか確率で表現する。
- 商業施設に1ヶ月に何回行くかは
- 商業施設の売場面積
- 自宅から商業施設までの時間距離
- で決まる

NU

Social Research Methods（再掲）
－世の中で起きている社会現象をデータとして収集し，デー夕を分析することで，世の中の社会現象を定量的に捉えること
－経験と勘のみでは，社会現象を正しく理解できな かったり，問題の解決にはつながらないことがある。
－科学的なデータから客観的に社会現象をとらえるこ とで，政策評価を行うことができる。

NBU Aさんの消費行動（開業後）

NBU

商業施設に行く回数を確率で表現

$$
\begin{equation*}
P_{i j}=b_{i} U_{i j} \quad i=\cdots n \quad j=\cdots m \tag{1}
\end{equation*}
$$

$P_{i j}$ ： 居住地に住む消費者が ${ }^{\text {商業地を選択する確率 }}$
$U_{i j}:$ 居住地の消費者が j 商業地にもつ効用 $\left(U_{i j}>0\right)$
b_{i} ：パラメータ $\left(b_{i}>0\right)$

$$
U_{i j}=\frac{S_{j}}{T_{i j}^{\lambda}}(\lambda>0)
$$

S_{j} ：商業地の売場面積
$T_{i j}:$ ：居住地から啇業地までの時間距讎
λ ：は売場面積上時間をくつつける接着剂
© Department of Business and Economics，
School of Business and Econem

NBU ハフ原モデルの式

$$
P_{i j}=\frac{\frac{S_{j}}{T_{i j}^{\lambda}}}{\sum_{k=1}^{m} \frac{S_{k}}{T_{i k}^{\lambda}}} \quad \begin{aligned}
& i=1, \ldots, n \\
& j=1, \ldots, m
\end{aligned}
$$

Schopartment of Business and Economics，
School of Business and Economics，Nippon，Bunri University

NBU

居住地1のA商業地への選択確率

$$
\begin{gathered}
P_{1 A}=\frac{\frac{S_{A}}{T_{1 A}^{\lambda}}}{\left(\frac{S_{A}}{T_{1 A}^{\lambda}}+\frac{S_{B}}{T_{1 B}^{\lambda}}\right)}=\frac{\frac{5000}{10^{2}}}{\left(\frac{5000}{10^{2}}+\frac{15000}{20^{2}}\right)}=\frac{4}{7} \\
P_{1 B} \text { を同様に求めよ }
\end{gathered}
$$

NBU Aさんの消費行動（開業後）

$$
P_{i j}=\frac{\frac{S_{j}}{T_{i j}^{\lambda}}}{\sum_{k=1}^{m} \frac{S_{k}}{T_{i k}^{\lambda}}} \quad \begin{aligned}
& i=1, \ldots, n \\
& j=1, \ldots, m
\end{aligned}
$$

NBU

居住地： 1 商業地：A，B，C ※ $\lambda=2$ とする。
$S_{j}:$ 商業地の売場面積

$T_{1 j}$ ：居住地1 から商業地までの時間距離

$$
\begin{array}{ccc}
T_{1 A} & T_{1 B} & T_{1 C} \\
10 & 20 & 20
\end{array}
$$

School of Business and Ecens and Economics，

NBU
 効用は売場面積と時間距離で決定する

$S_{j}:$ ：商業地の売場面積
$T_{i j}$ ：居住地から商業地までの時間踤離
$\lambda: は$ 売場面積と時間をくつつける接着剤

Separtment of Business and Economics，
School of Business and Econamis，Nippon Bunri University

NBU
 商業施設Aの売上

商業施設Aの売上
二選択確率 \times 人 $\square \times$（限界消費性向 \times 可処分所得）
開業前 ：$R S_{A}=\frac{4}{7} \times 10,000 \times 0.5 \times 1,000,000=2,857,143$
開業後 ：$R S_{A}=\frac{4}{11} \times 10,000 \times 0.5 \times 1,000,000=1,818,182$
減収 $=2,857,143-1,818,182=1,038,961$
© Department of Business and Economics，
School of Business and Economics．Nipoon，Bunri University

NBU
居住地1のA商業地への選択確率

$$
\begin{aligned}
& P_{1 A}= \frac{\frac{S_{A}}{T_{1 A}^{\lambda}}}{\left(\frac{S_{A}}{T_{1 A}^{\lambda}}+\frac{S_{B}}{T_{1 B}^{\lambda}}+\frac{S_{C}}{T_{1 C}^{\lambda}}\right)}=\frac{\frac{10000}{10^{2}}}{\left(\frac{10000}{10^{2}}+\frac{15000}{20^{2}}+\frac{20000}{20^{2}}\right)} \\
&= \frac{\frac{10000}{100}}{\frac{10000}{100}+\frac{15000}{400}+\frac{20000}{400}}=\frac{4000}{40000+15000+20000} \\
&= \frac{40000}{75000}=\frac{40}{75}=\frac{8}{13}>\frac{4}{7}=\text { 開業前の選択確率 } \\
& \boldsymbol{P}_{1 B}, \boldsymbol{P}_{1 C} \text { を同様に求めよ }
\end{aligned}
$$

$$
\begin{aligned}
& P_{1 A}= \frac{\frac{S_{A}}{T_{1 A}^{\lambda}}}{\left(\frac{S_{A}}{T_{1 A}^{\lambda}}+\frac{S_{B}}{T_{1 B}^{\lambda}}+\frac{S_{C}}{T_{1 C}^{\lambda}}\right)}=\frac{\frac{5000}{10^{2}}}{\left(\frac{5000}{10^{2}}+\frac{15000}{20^{2}}+\frac{20000}{20^{2}}\right)} \\
&= \frac{\frac{5000}{100}}{\frac{5000}{100}+\frac{15000}{400}+\frac{20000}{400}}=\frac{\frac{20000}{400}}{\frac{20000+15000+20000}{400}} \\
&= \frac{20000}{55000}=\frac{20}{55}=\frac{4}{11}<\frac{4}{7}=\text { 開業前の選択確率 } \\
& P_{1 B}, P_{1 C} \text { を同様に求めよ }
\end{aligned}
$$

© Department of Business and Economics，
School of Business and Economics，Nippon Bunri University

NBU 新しい商業施設ができると

既存の商業施設へ行く確率は減少する恐れがある。
仮に，
居住地1の人口が10000人で
一人あたりの可処分所得が 100 万円で
限界消費性向がO．5
つまり，所得の半分を消費するならば，
商業施設Aの売上
$=$ 選択確率 \times 人口 \times（限界消費性向 \times 可処分所得）
© Department of Business and Economics，
School of Business and Economics，Nippon，Bunri University

NBU 計算例 商業施設Aが10000 ${ }^{2}$ に増床

居住地： 1 商業地：A，B，C ※ $\lambda=2$ とする。
S_{i} ：商業地の売場面積

S_{A}	S_{B}	S_{C}
5000	15000	20000

\Downarrow
10000
$T_{1 j}$ ：居住地 1 から商業地までの時間距離

$$
\begin{array}{lll}
T_{1 A} & T_{1 B} & T_{1 C}
\end{array}
$$

$$
\begin{array}{lll}
10 & 20 & 20
\end{array}
$$

© Department of Business and Economics，
School of Business and Economics，Nippon Bunri University

NBU 新しい商業施設ができると

既存の商業施設へ行く確率は減少する恐れがある。
仮に，
居住地1の人口が10000人で
一人あたりの可処分所得が 100 万円で
限界消費性向がO．5
つまり，所得の半分を消費するならば，
商業施設Aの売上
$=$ 選択確率 \times 人口 \times（限界消費性向 \times 可処分所得）

商業施設Aが増床することによって
売上をのばす
二選択確率 \times 人 $\square \times$（限界消費性向 \times 可処分所得）
開業前 ：$R S_{A}=\frac{4}{7} \times 10,000 \times 0.5 \times 1,000,000=2,857,142,857$
開業後 ：$R S_{A}=\frac{4}{11} \times 10,000 \times 0.5 \times 1,000,000=1,818,181,182$減収 $=2,857,142,857-1,818,181,182=1,038,961,045$
増床後 ：$R S_{A}=\frac{8}{13} \times 10,000 \times 0.5 \times 1,000,000=3,076,923,077$
商業施設Cがきても，増床することによって影響を抑えることができる

日本経済新聞 2013年9月6日地方面

日本経済新聞 2014年5月10日地方面

